Root canal treatment of a mandibular first premolar with a category 3 C-shaped root canal anatomy: a case report

Access to this content is provided by: Henry Schein Dental
For more content provided by Henry Schein Dental visit quintessence-partner.com
Root canal treatment of a mandibular first premolar with a category 3 C-shaped root canal anatomy: a case report

Key words anatomical variation, C-shaped root, C-shaped root canal, cone beam computed tomography, dental anomalies, mandibular premolar, tomography, tooth morphology

The C-shaped configuration of the root and root canal system is an unusual anatomical variation in mandibular first and second premolars. It is categorised as a ‘C’ due to the transverse morphology of the root and the root canal. The main anatomical characteristic is the presence of an invagination groove caused by Hertwig epithelial sheath faults during root development. This case report describes the root canal treatment of a C-shaped configuration of a mandibular first premolar, identified by means of cone beam computed tomography.

Introduction

Mandibular premolars are considered one of the most difficult teeth for root canal treatment due to the presence of multiple root canals, apical deltas, lateral canals and possible anatomic root variations in the form of a ‘C’.

A detailed evaluation of the tooth and its root morphology is a prerequisite for the success of endodontic therapy. For a successful result in root canal treatment the main objective is to achieve an adequate chemical and mechanical disinfection of the root canal system, followed by a three-dimensional obturation with an inert filling material and the subsequent restoration that prevents access to microorganisms.

The main cause of the appearance of roots in the form of a ‘C’ is caused by a failure in the epithelial Hertwig sheath during dental development; the C-shape appears when the vestibular or lingual area of the roots fuse irregularly, and only stays connected by an interradicular groove. The root canals with C-shaped configurations in their cross-section have the shape of the letter ‘C’. However, these are not always continuous from the entrance of the canal to the apical foramen. The main anatomical characteristic is the presence of isthmuses that connect the individual canals, and that can vary along the root in their cross-sections.

Fan et al classify the C-shaped lower premolars according to their cross-section obtained by micro-CT scanning in the following categories:

- Category I (C1): the shape was a continuous ‘C’ with no separation or division;
- Category II (C2): the canal shape resembled a semicolon resulting from a discontinuation in the ‘C’ outline;
- Category III (C3): two separate round, oval, or flat canals;
- Category IV (C4): only one round, oval, or flat canal in that cross-section, which was further classified into three subdivisions:
 - C4a (round canal): the long canal diameter was almost equal to the short diameter;
 - C4b (oval canal): the long canal diameter was at least twice as short as the short diameter;
 - C4c (flat canal): the long canal diameter was at least twice as long as the short diameter.
The purpose of this article is to present the root canal management of a first mandibular left premolar with a category 3 C-shaped configuration, using CT as a diagnostic and planning tool.

Case report

A 50-year-old Colombian woman with a non-contributory medical history was referred by the undergraduate clinic of endodontics to the postgraduate clinic of endodontics of the Universidad Central de Venezuela for root canal treatment of the left mandibular first premolar. At the time of the first examination, there was no spontaneous pain. The patient had a negative history of pain in tooth 34. She also reported no history of trauma.

Clinical examination revealed that the coronal morphology of the dimensions of tooth 34 and its anatomy were within normal limits and showed that the tooth had a deep defective temporary restoration at the occlusal aspect. There was no mobility, swelling or sinus tract, and periodontal probing depths were within normal limits. In addition, the tooth was not tender to percussion, and pulp sensitivity tests showed no response to cold or to electric pulp testing.

The radiographic evaluation of the premolar revealed an unusual and complex root canal anatomy with a distal curvature of the root (Fig 1). Due to its challenging morphology, the C-shaped anatomy increases the difficulty in endodontic therapy and may explain the frequent appearance of treatment failures associated with these teeth.

For root canal procedures on teeth with roots with C-shaped configurations the conventional radiographs used for the evaluation of the root anatomy do not provide sufficient data for the analysis of the case. Therefore, the best method for an accurate determination of the root canal morphology is the use of computed tomography (CT) to analyse three-dimensionally the unusual anatomy of the mandibular premolars with these configurations in axial, sagittal and coronal slices.

In terms of medication, calcium hydroxide \([\text{Ca(OH)}_2]\) paste is used for C-shaped root canals in order to disinfect the areas that instruments and irrigants cannot reach. With regard to root canal obturation, Kim et al. compared warm gutta-percha filling techniques with conventional cold lateral condensation using simulated C-shaped root canals embedded in resin blocks. They concluded that warm gutta-percha condensation techniques can be expected to result in favourable canal filling in C-shaped root canals.

The prevalence of C-shaped root canals in the first mandibular premolar varies between different ethnic groups. Lu et al. evaluated the morphology of the canal in 82 mandibular first premolars in a Chinese population using the cross-sectional method and reported that 18% of the teeth had the C-shaped configuration.

Baisden et al. studied the cross-sections of 106 mandibular first premolars in a population in the United States and found that the prevalence of C-shaped canals was 14%. Sikri and Sikri investigated the variations of pulp cavity morphology in 112 samples using the same method and reported that the prevalence of the C-shape in an Indian population was 10.7%. Fan et al. evaluated 358 mandibular premolars in a Chinese population with cross-sectional tomography and reported that 24% of teeth had a C-shaped configuration. Due to its challenging morphology, the C-shaped anatomy increases the difficulty in endodontic therapy and may explain the frequent appearance of treatment failures associated with these teeth.

In terms of medication, calcium hydroxide \([\text{Ca(OH)}_2]\) paste is used for C-shaped root canals in order to disinfect the areas that instruments and irrigants cannot reach. With regard to root canal obturation, Kim et al. compared warm gutta-percha filling techniques with conventional cold lateral condensation using simulated C-shaped root canals embedded in resin blocks. They concluded that warm gutta-percha condensation techniques can be expected to result in favourable canal filling in C-shaped root canals.

Based on the above clinical, radiographic and CBCT findings, a necrotic pulp was diagnosed in
tooth 34 revealing a C3 C-shaped canal classification, according to Fan et al5, and a nonsurgical root canal treatment was planned for the tooth over two visits.

At the first appointment, access to the root canal system was reached after anaesthetising the area with 1.8 ml of 2% lidocaine with 1:100,000 epinephrine, and the use of rubber dam. Although a necrotic pulp was diagnosed, anaesthesia was used in order to avoid gingival discomfort when the rubber dam clamp was placed. By using an operative microscope (DF Vasconcellos, Rio de Janeiro, Brazil),
the ribbon-shaped pulp chamber was found and enlarged with an ET 20D ultrasonic tip (Satelec, Mergimac, France). This root canal split into two narrow canals to the apex, at 14.3 mm to the buccal cusp tip, as stated above. The first of the two orifices was buccal and the other lingual. A working length radiograph was taken (Fig 6) when the apex locator indicated the appropriate length (Root ZX Mini; Morita, Osaka, Japan). Stainless steel hand K-files up to size 20 (K-Flexofiles, Dentsply Maillefer, Ballaige, Switzerland) were first used to enlarge the canals. Next, rotary files (BioRace; FKG Dentaire, La Chaux-de-Fonds, Switzerland) were used to clean and shape the canals up to size BR4 35/04. The irrigant used during canal enlargement was 5.25% sodium hypochlorite (NaOCl) with a 27-gauge irrigation needle (Endo-Eze; Ultradent, South Jordan, Utah, USA).

Patency was achieved in all the root canals and was maintained with a size 10 K-file. After drying the canals with paper points, calcium hydroxide (Calsecure-P, Secure, Caracas, Venezuela) was used as an intracanal medicament with a lentulo size 30 (Maillefer, Ballaigue, Switzerland), and finally the access cavity was sealed with glass ionomer cement (Meron, Voco, Cuxhaven, Germany).

The patient returned to the clinic after 3 weeks, without any signs or symptoms of sinus tract, and after anaesthesia and rubber dam placement, the calcium hydroxide was removed from the root canals by means of EDT1 (Woodpecker DTE, Guangxi, China) with a size 15 file placed in it and copious irrigation with 5.25% sodium hypochlorite solution until the irrigant solution was crystal clear. After drying the canals with paper points, the fitting of the greater taper gutta-percha cones was checked (Autofit, Analytic Endodontics Glendora, CA, USA) (Fig 7). Each canal was obturated using the continuous wave obturation technique with warm gutta-percha (E&Q Master META Biomed, Chungbuk, Korea) and AH Plus sealer (Dentsply, Konstanz, Germany). A composite restoration (Tetric Ceram, Ivoclar Vivadent, Germany) was placed and a radiograph taken (Fig 8).

After 6 months, the patient returned to the clinic. Radiographic control findings were satisfactory, tooth 34 was asymptomatic, and a control radiograph showed no evidence of periapical pathology (Fig 9).

Discussion

C-shaped root canals have an unusual root configuration due to the complexity of their structure (isthmuses, multiple root canals, apical deltas, lateral canals). Clinical and instrumental experience are required during the treatment of these cases in order to avoid complications.

Dental practitioners who regularly treat populations of different origins should be aware of the differences that could arise in certain ethnic groups and their
possible influence on the anatomy of the pulp space, such as that reported by Baisden et al, Sikri and Sikri and Fan et al. Since in Venezuela no related statistic is handled in mandibular premolars with ‘C’ configurations, it is very important to bear in mind that there is a prevalence of this anatomical variation in the population. Having this knowledge would guarantee a better prognosis in the handling of such cases.

A thorough understanding of the morphology of the root canal system is essential, as well as the careful interpretation of angulated radiographs, and the use of CT to evaluate the root canal system in more detail and accuracy, including planification of an access cavity, a thorough initial exploration with pre-curved and low-gauge files, and the use of magnification and illumination throughout the treatment to achieve an adequate diagnosis and successful treatment.

In mandibular premolars, coronally, it is a single oval canal and the C-shaped anatomy that is located at the apical 3.0 mm and/or 6.0 mm level cross-sections, making identification of C-shaped anatomy in mandibular premolars more challenging. Thus, C-shaped canals would be difficult to detect from
the coronal approach, reinforcing the importance of coronal enlargement with ultrasonic tips under enhanced illumination and magnification using an operative microscope and with careful planning aided by CBCT1.

The root canal treatment of the C-shaped mandibular second premolar required a careful instrumentation strategy due to the difficulty of disinfecting the canals in the thin root area around a concavity without compromising the root structure. This is why CBCT was used in the present case to analyse the aberrant anatomy prior to chemomechanical preparation1,5,14.

The clinicians who carry out the treatment of complex cases related to the morphology of the root canal system must be patient, since appointments can be prolonged and may increase in number. The time involved in the treatment of such complex cases depends mainly on the clinical skill, experience and competence of the endodontist and the availability of specialised instruments and equipment15-17.

\section*{Conclusion}

Although the occurrence of mandibular first premolars with C-shaped canals is rare, clinicians should be aware of the anatomical variations of this tooth. CBCT imaging is advantageous and an essential diagnostic tool in detecting complex variants compared with conventional routine radiography. A well-scanned image will portray all the details and anomalies present, if any, and lead to successful root canal treatment. However, it is every clinician’s responsibility to weigh the benefits and risks for each patient before recommending CBCT imaging.

\section*{Disclosure statement}

The authors declare that there are no conflicts of interest.

\section*{References}